skip to main content


Search for: All records

Creators/Authors contains: "Tao, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Catechol-based materials possess diverse properties that are especially well-suitable for redox-based bioelectronics. Previous top-down, systems-level property measurements have shown that catechol-polysaccharide films ( e.g. , catechol-chitosan films) are redox-active and allow electrons to flow through the catechol/quinone moieties via thermodynamically-constrained redox reactions. Here, we report that catechol-chitosan films are also photothermally responsive and enable near infrared (NIR) radiation to be transduced into heat. When we simultaneously stimulated catechol-chitosan films with NIR and redox inputs, times-series measurements showed that the responses were reversible and largely independent. Fundamentally, these top-down measurements suggest that the flow of energy through catechol-based materials via the redox-based molecular modality and the electromagnetic-based optical modality can be independent. Practically, this work further illustrates the potential of catecholic materials for bridging bio-device communication because it enables communication through both short-range redox modalities and long-range electromagnetic modalities. 
    more » « less
  2. Learning to route has received significant research momentum as a new approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learning. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query. 
    more » « less
  3. Citations of scientific papers and patents reveal the knowledge flow and usually serve as the metric for evaluating their novelty and impacts in the field. Citation Forecasting thus has various applications in the real world. Existing works on citation forecasting typically exploit the sequential properties of citation events, without exploring the citation network. In this paper, we propose to explore both the citation network and the related citation event sequences which provide valuable information for future citation forecasting. We propose a novel Citation Network and Event Sequence (CINES) Model to encode signals in the citation network and related citation event sequences into various types of embeddings for decoding to the arrivals of future citations. Moreover, we propose a temporal network attention and three alternative designs of bidirectional feature propagation to aggregate the retrospective and prospective aspects of publications in the citation network, coupled with the citation event sequence embeddings learned by a two-level attention mechanism for the citation forecasting. We evaluate our models and baselines on both a U.S. patent dataset and a DBLP dataset. Experimental results show that our models outperform the state-of-the-art methods, i.e., RMTPP, CYAN-RNN, Intensity-RNN, and PC-RNN, reducing the forecasting error by 37.76% - 75.32%. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely Deep Image-based Spatio-Temporal network (DeepIST), for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects:1) we propose to plot a path as a sequence of -generalized images"which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN)on image processing; 2) we design a novel two-dimensional CNN, namely PathCNN, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37% to 25.64% of mean absolute error (MAE) in multiple large-scale real-world datasets. 
    more » « less
  7. Road network is a basic component of intelligent transportation systems (ITS) in smart city. Informative representation of road networks is important as it is essential to a wide variety of ITS applications. In this paper, we propose a neural network representation learning model, namely Intersection of Road Network to Vector (IRN2Vec), to learn embeddings of road intersections that encode rich information in a road network by exploring geo-locality and intrinsic properties of intersections and moving behaviors of road users. In addition to model design, several issues unique to IRN2Vec, including data preparation for model training and various relationships among intersections, are examined. We evaluate the learned embeddings via extensive experiments on three real-world datasets using three downstream test cases, including prediction of traffic signals and crossings on intersections and travel time estimation. Experimental results show that the proposed IRN2Vec outperforms three existing methods, DeepWalk, LINE and Node2vec, in terms of F1-score in predicting traffic signals (22.21% to 23.84%) and crossings (8.65% to 11.65%), and mean absolute error (MAE) in travel time estimation (9.87% to 19.28%). 
    more » « less